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SHANNONS’S THEOREM 
 
 

By Luiz Renato Gomes 
 
1. INTRODUCTION 
 
Really control system issues endeavor [make effort] to explain and get information focusing 
on the discrete-time control theory. 
This concernment has as objective to take some remarks about the ideal magnitude of 
integrative piecewise element used in simulating programmes. 
There are lots of ways and procedures that have been developed to make simulating 
arrangements more representatives in comparison with actual system.  
From now, we can make a question: How to calculate an ideal integrative period of time for 
a great power system as a 60-cycle electrical system, for instance? 
Here we are going to do some observations and after that we are going to compute and 
proof specific theorems that are applied to this approach. 
 
 
2. ELEMENTARY SIMULATION PROBLEM  
 
We are going to suppose that we want to simulate an elementary system as follows in 
figure 1. We are going to considerate the first order system. 
 
 
 
 

                                           
STT1

1
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1
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Figure 1 – An Elementary System 
 

 
Considering in figure 1 TT as the transducer time constant and TP as the process time 
constant we can notice that the transducer block has the characteristic of a low-pass filter. If 
the value of the transducer time constant was choose without taking into account the value 
of the process time constant, the output signal reconstruction will not be completely 
performed. 
This approach has been considered by lots of authors in the technical literature of automatic 
control and may be taken as an important detach applied for automatic control design. 
Normally, the Shannon’s theorem is the one that has been given the theoretical support in 
this way. 
We confirm that the conclusion of the Shannon’s theorem is very simple but previous 
calculus is not very easy. There are others theorems that are used to explain the Shannon’s 
theorem and we are going to rewrite them here. 
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3. CAUCHY INTEGRALTHEOREM 
 
We are going to present the Cauchy integral theorem that is based on Green’s theorem that 
is one of the most famous theorems of vectorial calculus. 
Considering an specific region R in space, a function f(z) is an analytic function if and only if 
this function is differentiable at all points of that region. 
After this remark, the Cauchy theorem confirms that, for any closed contour γ completely 
contained in region R, the following equation can be considered: 

 

0=∫γ dzzf )(                                                       (001) 

 
Taking z as a complex number, we have: 
 

yjxz +=                                                       (002) 
  
Rewriting function f(z) in a complex form too, we have: 
 

vjuzf +=)(                                                       (003) 
 

By substituting (002) and (003) into (001), gives: 
 

∫∫ ++=
γγ

)()()( dyjdxvjudzzf  

 
and then: 
 

∫ ∫∫ ++−=
γ γγ

)()()( dyudxvjdyvdxudzzf                              (004) 

 

We can notice that the integral symbol utilizes forms ∫γ and ∫γ because the first symbol of 

integral is usually operating on a closed contour, considering a simple-contour form without 
double points, and the second integral symbol does not necessarily obey this rule. 
From Green’s theorem we write the following equation: 

 

dydx
y
f

x
gdyyxgdxyxf ∫∫∫ 











∂
∂

−
∂
∂

=+
γ

]),(),([                           (005) 

and 
 

dydx
y
f

x
gdyyxgdxyxf ∫∫∫ 











∂
∂

+
∂
∂

−=−
γ

]),(),([                       (006)
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By comparing (004) to (006) we can write following equations considering the real part of 
(004): 
 

uyxf =),(                                                          (007) 
 

vyxg =),(                                                          (008) 
 
and then from (007) and (008): 
 

dydx
y
u

x
vdyvdxu ∫∫∫ 











∂
∂

+
∂
∂

−=−
γ

][                                     (009) 

 
 
By comparing (004) to (005) we can write following equations considering the complex part 
of (004): 
 

vyxf =),(                                                          (010) 
 

uyxg =),(                                                          (011) 
 
and then from (010) and (011): 
 

            dydx
y
v

x
ujdyudxvj ∫∫∫ 











∂
∂

−
∂
∂

=+
γ

][                                         (012) 

 
Considering now Cauchy-Riemann equations it is possible to prove in (009) and (012) 
following relationships: 
 

0=
∂
∂

+
∂
∂

y
u

x
v                                                                    (013) 

 
 

  0=
∂
∂

−
∂
∂

y
v

x
u                                                                    (014) 

 
so and finally 
 
 
 

                   0dzzf =∫γ )(                                                              (015) 

Then, Cauchy ‘s theorem states that the integral of f(z) in (015) around a closed contour Y, 
considering the complex plane, is zero if and only if the function f(z) is analytic within and on 
this contour. 
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4. GREEN’S THEOREM 
 
We are going to present the Green’s theorem that was used as a support during the 
development of Cauchy’s theorem. 
Considering figure 2, we can notice that there exists a closed contour R that is a perfect 
simple contour that has the property of never being cut in more than two points by any 
straight that is parallel to coordinate axes neither Y nor X.   
 

 
                                                             Y 
 
                                                                   
                                            
                           
                                                                                
                                                      
                                                                                                             
                                                                                                                                   X 
 
 
 

Figure 2 – A Closed Contour 
 

 
Notice that curve C [path AFBEA] defines the region R that has a positive movement   in a 
counterclockwise direction along the curve. 
Be )(xy Y 1= and )(xy Y 2= equations of curves AEB and AFB, respectively. Considering 
R the region limited by curve C in figure 2 and if M(x,y) are analytic functions of X and Y 
within region R, we can obtain the following development. 
 

[ ] ==














∂
∂

=
∂
∂ ∫∫ ∫∫∫

b

a

x
x

b

a

x

x
R

dxyxM Y
Ydx

Y

Y
dy

y
Mdydx

y
M

),( )(
)(

)(

)(
2
1

2

1

 

 
 

[ ] [ ] [ ] ∫∫∫∫ −=−−=−=

C

a

b

b

a

b

a
dxyxMdxYxMdxYxMdxYxMYxM ),(),(),(),(),( 2112

 

So 

∫∫∫ ∂
∂

=−

RC

dydx
y

yxMdxyxM ),(),(  

 
and 

Curve C 

A 
B 

E 

F 

R 

a b 

e 
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∫∫∫ ∂
∂

−=

RC

dydx
y

yxMdxyxM ),(),(                                      (016) 

 
 
 
Be )(yXx 1= and )(yXx 2= equations of curves EAF and EBF, respectively. Considering 
R the region limited by curve C in figure 2 and if N(x,y) are analytic functions of X and Y 
within region R, we can obtain an analog development. 
 

=



=

















∂
∂

=
∂
∂ ∫∫ ∫∫∫

f

e

x

x

f

e

y

y
R

dxyxN
X

X
dy

X

X
dx

x
Ndydx

x
N ),(

)(

)(

)(

)(

2

1

2

1

 

 
 

∫∫∫∫ =



+



=



 −=

C

e

f

f

e

f

e
dyyxNdyyXNdyyXNdyyXNyXN ),(),(),(),(),( 1212  

So 

∫∫∫ ∂
∂

=

RC

dydx
x

yxNdxyxN ),(),(                                       (017) 

 
Adding equations (016) and (017) we have: 
 
 

 

∫∫∫∫∫∫ ∂
∂

+
∂

∂
−=+

RRCC

dydx
x

yxNdydx
y

yxMdyyxNdxyxM ),(),(),(),(  

 
 
Joining members of previous equations we can put Green’s theorem in its final form. 
So 
 

∫∫∫ 











∂
∂

−
∂

∂
=



 +

RC

dydx
y

yxMdydx
x

yxNdyyxNdxyxM ),(),(),(),(                (018) 

 
 
We can notice that equation (018), from Green’s theorem, has been used by Cauchy 
integral theorem development, equation (005), as the supported subside. Analog 
development we will obtain for equation (006). 
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5. CAUCHY-RIEMANN EQUATIONS 
 
Now, we have to be able to prove other important theoretical approach based on Cauchy-
Riemann equations adopted during the presentation of Cauchy integral theorem. 
Let the following generic equation with the specific formulation: 

 
 

),(),(),( yxvjyxuyxf +=                                             (019) 
 

Let be 
yjxyxz +=),(  

(020) 
yjxyxz −=),(  

 
or simply 
 

yjxz +=  
(021) 

yjxz −=  
 
Taking the differential elements from equations (020) we have: 
 
 

dyjdxdz +=                                                          (021) 
 

The total derivative of function f(x,y) with respect to variable z can be computed as follows. 
 
From equations (021) we are going to compute variables x and y as a function of variables 
z and z . 
 
By summing z and z  we compute: 
 

2
zzx +

=                                                           (022) 

 
By subtracting z and z  we compute: 
 

              
j
zzy

2
−

−=                                                         (023) 

 
 

The partial derivative of x in respect to variable z is: 
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2
1

=
∂
∂
z
x                                                              (024) 

 
 
 
 
The partial derivative of y in respect to variable z is: 
 

jz
y

2
1

=
∂
∂                                                            (025) 

 
 
 
and the partial derivative of function f is: 
 
 

z
y

y
f

z
x

x
f

z
yxf

∂
∂

∂
∂

+
∂
∂

∂
∂

=
∂

∂ ),(
                                                           (026) 

 
 

By substituting  (024) and (025) into (026) we have: 
 
 















∂
∂

−
∂
∂

=













∂
∂

+













∂
∂

=
∂
∂

y
fj

x
f

jy
f

x
f

z
f

2
1

2
1

2
1

                                           (027) 

 
 

We have to put (027) in terms of u and v.  So, we must find expressions for 
x
f
∂
∂  and 

y
f

∂
∂  

from (019). 
 
Taking the derivative form of (019), first with respect to variable x and after with respect to 
variable y, we have: 
 
 

x
vj

x
u

x
yxf

∂
∂

+
∂
∂

=
∂

∂ ),(
                                                              028) 

 
 

y
vj

y
u

y
yxf

∂
∂

+
∂
∂

=
∂

∂ ),(
                                                              029) 

 
By substituting (028) and (029) into (027) we have: 
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













∂
∂

+
∂
∂

−













∂
∂

+
∂
∂

=
∂
∂ )()(

y
vj

y
uj

x
vj

x
u

z
f

2
1

2
1  

 
And then 
 












∂
∂

−
∂
∂

+








∂
∂

+
∂
∂

=
∂
∂ )()(

y
uj

y
v

x
vj

x
u

z
f

2
1

2
1

                                             (030) 

 
 
Now we can make the following insight about the complex number theory. Considering the 
complex number, it is true that, if there is a differentiable complex function, the derivative 
has to there exist in all the points of this function. It is clearly that along the x-axis the 

operation 
y
f

∂
∂  is zero, in other words 0=

∂
∂
y
f  . 

Taking the analog concerning, we can conclude that along the y-axis the operation 
x
f
∂
∂  is 

zero too, in other words 0=
∂
∂
x
f  . 

 

So, we can write the following relationships for 
z
f
∂
∂ : 

in respect to x-axis 









∂
∂

+
∂
∂

=
∂
∂ )(

x
vj

x
u

z
f

2
1

                                                             (031) 

 
in respect to y-axis 
 












∂
∂

+
∂
∂

−=










∂
∂

+
∂
∂

−=
∂
∂ )()(

y
v

y
uj

y
vj

y
uj

z
f

2
1

2
1

                                           (032) 

 
 
It is easy to notice that equations (031) and (032) are equals to each other. 
So 

 
 












∂
∂

+
∂
∂

−=







∂
∂

+
∂
∂

=
∂
∂ )()(

y
v

y
uj

x
vj

x
u

z
f

2
1

2
1  

 
 

and  

y
v

x
u

∂
∂

=
∂
∂

                                                                          (033) 
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y
u

x
v

∂
∂

−=
∂
∂

                                                                         (033) 

 
Equations (032) and (033) are known as Cauchy-Riemann equations and they have been 
applied for proving Cauchy integral theorem. 
 
 
6. RESIDUE THEOREM 
 
We are going to present the residue theorem that is based on Laurent series, a particular 
mode of presenting an analytic function taking a sequence of numbers. 
Considering a specific region R in space, a function f(z) is an analytic function if and only if 
this function is differentiable at all points of that region. 
The function f(z) is given by Laurent series and gets the following mode: 
 

)( zz n
n

anf(z) 0−∑
∞

−∞=
=                                                (034) 

 
From the series sequence theory, we recognize z0  as the center of Laurent series. 
Integrating term-by-term of (034) and using a closed contour Y encircling point z0 , we can 
obtain the following development: 
 
 

dzzz n
n

anzz
dzadzzz n

n
an

dzzz n
n

andzzzadzzz n
n

an

dzzz n
n

andzf(z)

∫∫∫

∫∫∫

∫∫

−∑
∞

=
+

−−+−∑
−

−∞=
=

=−∑
∞

=
+− −

−+−∑
−

−∞=
=

=−∑
∞

−∞=
=

γγγ

γγγ

γγ

)(
)(

)(

)()()(

)(

0
0

0

000

0

0
1

2

0
1

1
2

 

 
 
We already know that the integral encircling a contour is always zero, but when the point of 
contour is a pole we have there a singularity. At this point the integral is different from zero. 
So, considering Cauchy integral theorem we have, for three members of previous equation 
that: 
 
 

 

0
2

0 =−∑
−

−∞= ∫ dzzz n
n

an
γ

)(                                                           (035) 
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0
0

0 =−∑
∞

= ∫ dzzz n
n

an
γ

)(                                               (036) 

and 
 

 01 0
≠

−− ∫ )( zz
dza

γ
                                                                     (037) 

 
 

 
So, previous equation can be condensing in following relationship: 
  
 

)( zz
dzadzf(z)

01 −−= ∫∫ γγ
                                                      (038) 

 
In (038) the coefficient a 1−  is the complex residue for pole z0 . 
 

Taking the contour e jtzz += 0  over the pole we can solve the integral (038).  We can write 

for differential element that dte jtjzd = . 
So 
 
 

        j2π
e jt

dte jtj
zz

dz ==
− ∫∫

π

γ

2

00)(
                                               (039) 

 
So we have for (038): 
 

ja2πdzf(z) 1−=∫γ                                                            (040) 

 
 
 
It is easy to notice from equation (040) that, if there are more than two poles and the 
contour Y encloses these poles of function f(z), taking the encirclement in a 
counterclockwise direction, the integral of this function enclosed gives the summation of 
residues of this function f(z). That is the theorem of summation of residues. 
So, we have, for a generic condition, that: 
 
 

][f(z)Residuesj2πdzf(z) ∑=∫γ                                               (041) 

 
In equation (041) ][f(z)Residues∑  represents the set of residues for those poles enclosed 
by the contour Y.  By the way, this theorem states that the value of a contour integral, for a 
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generic contour, in the complex plane, depends on the properties of a few very special 
points inside the contour, more properly, poles of a function in focus. 
It is very important to pay attention to the fact that the positive direction in (041) is the 
counterclockwise direction and that the negative direction is the opposite, or the clockwise 
direction. 
 
 
7. LAURENT SERIES 
 
We are going to present Laurent Series, a particular form of presentation of an analytic 
function. 
If f(z) is an analytic function in the annular region between and on concentric circles C1 and 
C2 , with center at point z= z0 and radii r1 and r2 , where r1 > r2 , respectively, then there 
exists a unique series in sequence of terms of positive and negative powers of        binomial   
( z- z0 ).  
Figure 3 represents two circular and concentric contours and a central point z0. 
 
 
 
 
 
 
 
 
 
 

 
 
 

 
 
 
 
 

Figure 3 – Two Circular Contours 
 
 

We have to notice that there have been two cut lines between circular contours C1 and C2   
and we are going to integrate around the path C = C1 - C2 + Cc  - Cc.    
The contribution of Cc cancels one another and the final path depends upon contours C1 
and C2.  This is very interesting and important for the conclusion of this approach. 
By using Cauchy integral formula (*) we can write the following development considering 
the pole Z1: 
 
 

∫ −
=

C
dz

zz
zf

j2πzf
)(

)()(
1

1
1                                             (042) 

 

C2 
 

C1 
 

Cc 
 

Cc 
 

Zo 
 

Z1 
 

__________ 
(*) Don’t confuse Cauchy integral theorem with Cauchy integral formula. 
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Contour C occurs around the path C = C1 - C2 + Cc  - C so that equation (042) cab be 
rewrite as follows: 

 

∫∫

∫∫

−
−

−
−

−
−

+
−

=

c
dz

zz
zf

j2πc
dz

zz
zf

j2π

c
dz

zz
zf

j2πc
dz

zz
zf

j2πzf

c

c

)(
)(

)(
)(

)(
)(

)(
)()(

12 1

11 1
1

11

11

                        (043) 

 
 
We have to pay attention to the special condition in which the second and the fourth terms 
of (043) cancel one another. So, (043) can be reduced to equation (044), as follows: 
 
 

∫∫ −
−

−
=

c
dz

zz
zf

j2πc
dz

zz
zf

j2πzf
2 11 1

1
11

)(
)(

)(
)()(                            (044) 

 
 
Now, we are going to do an algebraic manipulation into (044). This changing will be done to 
allow facilities. 
 

∫∫ −−−
−

−−−
=

c
dz

zzzz
zf

j2πc
dz

zzzz
zf

j2πzf
2 0101 010

1
11

)()(
)(

)()(
)()(  

 
 
We can rewrite foregoing equation as follows: 
 

∫∫ −
−
−

−
−

−
−

−−
=

c
dz

zz
zz

zz

zf
j2πc

dz

zz
zz

zz

zf
j2πzf

2
01

0
011

0

01
0

1
1

1

1

1

)()(

)(

)()(

)()(  

 
 

Foregoing equation can be rewrite as follows: 
 
 

∫∫
−
−

−−
+

−
−

−−
=

c
dz

zz
zz

zz

zf
j2πc

dz

zz
zz

zz

zf
j2πzf

2
01

0
011

0

01
0

1
1

1

1

1

)()(

)(

)()(

)()(       (045) 

 
 

From the infinite-series theory, we can prove next relationship (046): 
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q

qqqq
n

n
−

=

∞

=++++ ∑
=

1
11

0

32 K                                         (046) 

 
Using (046) in (045), we have for two members in right side that: 
 
 

∑
∞

−
−

=

−
−

− =0
0

01

0

011

1

n

n

zz
zz

zz
zz

)(
)(

                                              (047) 

 

∑
∞

−
−

=

−
−

− =0
01

0 01
0

1

1

n

n

zz
zz

zz
zz

)(
)(

                                              (048) 

 
Substituting two foregoing equations in (045) we obtain: 
 
 

 ( ) ( )∫ ∑∫ ∑
∞

−

−

−
+

∞

−
−

−
=

== c
dz

zz
zz n

zz
zf

j2πc
dz

zz
zz n

zz
zf

j2πzf
nn 2 0 01

0

011 0
0

01

0
1

11
)(

)(
)(

)()(   (049) 

 
 
Considering properties from integral calculus theory, we can rewrite (049) as follows: 
 

( ) ∫∑∫∑ −
∞

− ++
− +

∞

−=

== c
dzzfzz n

zz nj2πc
dz

zz n
zf

zz
n

j2πzf
nn 20

110
011 0

0
1

11

0
1

1 )()(
)()(

)()(  

 
 
Rewriting previous equation, we have: 

 
 

( ) ∫∑∫∑ −
∞

− −−+
− +

∞

−=

== c
dzzfzz n

zz n
j2πc

dz
zz n

zf
zz

n

j2πzf
nn 20

1
10

011 00
11

0
1

1 )()()(
)(

)()(

 
 
Promoting a special changing in the variable n, at the second summation, in the previous 
equation, we have: 
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( ) ∫∑∫∑ − −
∞

− −+
− +

∞

−=

== c
dzzfzz n

zz n
j2πc
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(050) 
 
 
 
Equation (050) is the generic form of Laurent series formula and can be presented in a 
condensed mode as follows: 
 

( ) ∑∫∑∫
∞

− −− −+

∞

−
− +

=

== 1
1

20
01

1
1 00

11

0
1

1

nn
zz n

c
dzzfzz n

j2πzz
n

c
dz

zz n
zf

j2πzf )()()(
)(

)()(

(051) 
 

At that point we have to do a changing of variable to put equation (051) in a generic form of 
Laurent series formula. 
So, we have: 
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(052) 
 

In equation (052), several authors have been used the generic formulas, as follows: 
 

( ) ∑∑
∞

− −+

∞

−=

== 10
0 0

n
n

n
n zzb nzza

n
zf )()(                             (053) 

 
where: 
 

∫ − +
=

c
dv

zv n
vf

j2πan
1 0

1
1

)(

)(                                      (054) 

 

∫ − −=
c

dvvfzv n
j2πbn

2
0

11 )()(                                    (055) 

 
and inverting the signal of variable n and alternating the limit position at the second 
summation, in equation (051), we have: 
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or better 
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At that moment we have to do an important remark about the generic contours C1 and C2. 
It is interesting for us to work with a circle C as a new path in substitution of contours C1 
and C2 utilized in previous calculus. 
And then, we have: 
 

( ) ∫∑ − +

∞

∞

−=
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dz
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zf
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n

j2πzf
)(

)()(
0

1
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011                            (056) 

 
 

At that point we have to do a changing of variable to put equation (056) in a generic form of 
Laurent series formula. 
So, we have: 
 

( ) ∫∑ − +

∞

∞

−=

−= Cn

dw
zw n
wf

zz
n

j2π
zf

)(
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1
1

0                            (057) 

 
 
In equation (056), several authors have been used the generic formula, as follows: 
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n zza
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where: 
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c
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j2π
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It is interesting to notice that, considering the region specified by figure 3, annular region 
can be expanded by increasing radius of  C1 or decreasing radius of C2 until singularities of 
f(z), that exist outside C1 or inside C2, to be reached. 
Paying attention to calculus, we notice too that if function f(z) has no singularities inside C2 
the parameter bn is equal zero and Laurent series reduces to a Taylor’s series. 
 
 
8. CAUCHY INTEGRAL FORMULA 
 
We are going to present Cauchy integral formula a different mode of calculating the value of 
integral along the contour Y enclosing a particular point Zo as is sketched in figure 4. 
 
 
 
 

 
 

  =     +  
 
 
 
 

 
Figure 4 –Representation of Summation of Contours 

 
In figure 4 we can notice that contour Y, the original contour, is the summation of contour 
Yo and contour Yr. Contour Y is the one that is enclosing point Zo, contour Yo is the one 
that is not enclosing it and contour Yr is the one that is enclosing.  
Contour Yr can be understood as an infinitesimal counterclockwise circle around point Zo 
and Yo a path that presents a cut line not enclosing this point. Y Is the total path. 
We are going to take following integral to start computing the first calculus in order to prove 
Cauchy integral formula. 
 
 

∫ −
=

γ
dz

zz
zf

j2πzf
)(

)()(
0

1
0                                             (059) 

 
 
Taking into account that: 
 

γγγ r+= 0                                                         (060) 
 
 

the integral (059) gets: 
 
 

 

Y Yo 

Yr 
Zo 
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Then: 

 

∫∫∫ −
+

−
=

− γγγ r

dz
zz
zfdz

zz
zfdz

zz
zf

)(
)(

)(
)(

)(
)(

000 0

                         (061) 

 
From Cauchy integral theorem we know that contour integral along any path not enclosing a 
pole is always zero. Then, the integral over the contour Yo is zero. 
So, equation (061) takes the following form: 
 

 ∫∫ −
=

− γγ r

dz
zz
zfdz

zz
zf

)(
)(

)(
)(

00
                                     (062) 

 
 
Now, we are going to represent singular point Zo in contour Yr by a complex number in 
polar coordinates. 
 
Let 

erzz jθ+= 0                                                      (063) 

 
In equation (063) we have: 
 
r   : radius; 
θ  :  angle. 
 
and deriving (063) in respect to variable θ , gets: 
 

dθerjdz jθ=                                                      (064) 
 

Substituting equations (063) and (064) into equation (062), we obtain: 
 
 

θ
γ

θ
γ

θ
γ

θθ
θ

θ
θ

θ

θ

γ
derzfjdejr
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dejr
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dz
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j
j

r
j
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−
)(
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)(
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)(

0
0

00

0

0
                                  (065) 

 
 
Considering the limit of radius r 0 we can rewrite (065) as follows: 
 

 



  
LRG-ME 006/2012 

  

Shannon’s Theorem.doc 19 

θ
γ

θ
γ

θ
γ

θ
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dzjfdzfjderzfjdz

zz
zf

rrr

j
r ∫∫∫∫ ==+=

− →
)()()(lim)(

)(
000

0 0
    (066) 

 
 
The integral from (066) goes around point Zo and, for only one encircling, allow us to write: 
 
 

)()(
)(

)(
zfjπdzjfdz

zz
zf

r
020

0
==

− ∫∫ θ
γγ

 

 
Basing on foregoing equation, we can finally write: 
 
 

 ∫ −
=

γ
dz

zz
zf

jπzf
)(

)()(
02

1
0                                          (067) 

 
 
9. MAPPING THEOREM 
 
Mapping theorem can be understood as a large application of previous theory that has been 
developed as a support for this real theory and others in this way. 
We can start mapping theorem taking the following concernment: let function f(s) be a ratio 
of polynomials in variable s and consider P the number of poles and Z the number of zeros 
of this function. Accepting that poles and zeros of function f(s) lie inside a specific closed 
contour in the s-plane we have taking into account that closed contour, in the s-plane, maps 
into the f(s)-plane as a closed curve. The number N of clockwise encirclements of the origin 
of the f(s)-plane is equal Z-P, or the subtraction of the number of zeros of f(s) and the 
number of poles of it.  
To prove the mapping theorem we are going to put in evidence previous concernments 
about Cauchy integral theorem and residue theorem. These two theorems were already 
proved and are the mathematical support for our conclusions.  
We are going to suppose a specific function f(s) in the complex variable s of Laplace given 
by (068). 
 
 

)(
)(

)(
)( sx

ps
zs

sf
m

k

1

1
1

1

+

+
=                                                (068) 

 
 
 
In equation (068) X(s) is the input function that is analytic in the considered closed contour 
and the transfer function has one zero Z1 and one pole P1. 
Now, the derivative form of (068) is: 
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Dividing member to member of (069) by expression of f(s) from (067) we can write the 
following expression: 
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The first parcel of second member of (070) can be developed as follows, taking its 
derivative function in respect to variable s: 
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Foregoing expression can be condensed as follows: 
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By substituting (072) in (070) we can obtain: 
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We can notice that equation (073) is a particular case considering equation (068).  
Extending the case for second order condition when there exist two zeros and two poles we 
have: 
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Equation (074) has to some extent a certain credit to allow an expansion to higher order in 
terms of presenting zeros and poles in polynomial division. 
Now, the derivative form of (074) is: 
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In so doing, as in previous development, dividing member to member of (075) by 
expression of f(s) from (074) we can write the following expression: 
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Separating each term of derivative, we can obtain: 
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Promoting the regular simplifications we have: 
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Each parcel of second member of (077) is exactly equal to the development of (072) that 
was done previously. Now, we can obtain: 
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It is easy to notice that a simple analog reasoning is only necessary to obtain a generic 
formula considering a generic function. So, we can take the following conclusion. 
 
For a generic expression of f(s), as follows: 
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we can obtain the following development: 
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It is interesting to take into account that from equation (080), where the expression 
represents a generic condition, the main development results in a generic expression that is 
computed from parameters ki and mi  with i =0,1,2,3,…  

These parameters are called residues of polynomial ratio 
)(
)('

sf
sf  and have an important 

concept within control theory. 

We see that by taking the polynomial ratio 
)(
)('

sf
sf , a generic zero or a generic pole of function 

f(s) become simple pole of 
)(
)('

sf
sf . 
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For simplicity, we have to take, for analysis, not equations (073) or (081), but equation 
(082), a particular and simple case of both equations that have already been presented, 
with only a zero –z1.. 
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Considering, for simplicity, that the term
)(
)('

sx
sx  on the right-hand side of equation (082) 

contains no poles or zeros in the closed contour in the considered s-plane. 
Taking the integral of both sides of (082), we have: 
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Paying attention to equation (083) we conclude, by utilizing Cauchy theorem presented 
previously, see item 3, that the second parcel of second term is equal to zero. So: 
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By applying residue theorem, presented previously too, see item 6, we so conclude, taking 
that the positive direction of angle accounting is a counterclockwise direction: 
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Referring to generic equation (081) and taking into account that the polynomial ratio 
)(
)('

sx
sx  

is analytic in the closed contour considered here, we can notice that the factors inside the 
parenthesis are all simple poles located in the contour. So, taking analogous action, we 
have: 
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Observing equation (085), it is interesting to notice that, residues, here represented by 
L,,, kkk 321  and L,,, mmm 321 , inside parenthesis, can taken as the exponents or 

grades of multiplicity of each groups of poles and zeros of the polynomial ratio 
)(
)('

sx
sx . So 

)( L+++ kkk 321  represents the summation of numbers of zeros, included its multiplicities, 
and )( L+++ mmm 321  represents the summation of numbers of poles, included its 
multiplicities. 
 
So, we can write for zeros: 
 

)( L+++= kkkZ 321  
 
and for poles: 

 
)( L+++= mmmP 321  

 
 
So, finally, taking previous equations: 
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Since f(s) is a complex number with magnitude )(sf  and angle θ , then: 

 
 

esfsf sjθ )()()( =                                                     (087) 

 
 

The ratio 
)(
)'(

sf
sf  can be put in function of logarithmic. So then: 

 

ds
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sf )]([ln
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)('
=                                                     (088) 

 
Considering, now, a specific property of logarithms, from (087), we have: 
 

)()(ln)(ln sjθsfsf +=                                               (089) 

 
 
 

By deriving (089) in respect to variable s, we have: 
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or better: 
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Now, we are going to compute the circular integral of (090), in so doing, we can bring the 
whole concepts about this theory until here developing. 
If the closed contour in the s-plane is mapped into the closed contour, considered here, we 
obtain the integral of (090) as follows: 
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and  
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In the equation (091), we can notice that term ])([ln∫γ sfd is always zero, because it 

represents the circular integral, over a closed contour, of an analytic function, which the 
value is the same at the initial until the final point of the contour Υ. 
 
So we have: 
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Now, observing the circular integral acting over the closed contour in equation (092), we 
can obtain the solving of previous integral as follows, taking that difference between angles 

][ θθ 21− represents the difference between initial angle θ1  and the final angle θ 2 inside 
the movement. So, we have: 
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By comparing the result of equation (093) with the one of equation (086) we have: 
 

 
][][ PZjπθθj −−=−− 221  

 
or finally: 
 

][][ ZPπθθ −=− 212  
 

or better: 
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2
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Paying attention to equation (094) and taking into account that the difference between 

values of initial angle θ1 and final angle θ 2 ,of polynomial ratio 
)(
)('

sf
sf , is a representative 

movement of it along the closed contour, considered here, it is easy to consider that the 
principal movement occurs around the origin, when we define the s-plane as a reference. 

It is a fact that our choice for function f(s) was a complex number type esfsf sjθ )()()( =  

whose position depends on the s-plane origin. 
So, we can write a new interpretation for equation (094) where it is computed the number of 

clockwise encirclements N of origin in the s-plane by polynomial ratio 
)(
)('

sf
sf , as follows:  

 
 

 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
 

Figure 5 – Representation of Origin Encirclement 
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  N
π

θθ −=
−

2
12 ][                                                   (095) 

 
Figure 5 sketches the representative conformal movement around the origin by polynomial 

ratio 
)(
)('

sf
sf . 

We can notice that the mapping theorem does not need the exact number of zeros and 
poles, but it allow to compute only the difference between number of zeros and poles. 
Referring to the closed contour encircling the origin, the encirclement number will always be 
proportional to 2π. Now, when the origin is not encircling by the closed contour, because of 
being equals initial angle and the final angle, the encirclement number will always be zero. 
 
 
10. SAMPLING THEOREM 
 
Shannon’s theorem or sampling theorem is very important because of the basic material for 
analyzing discrete-time control systems or sampled-data control systems, nowadays very 
large applicable systems based on computer techniques.  
Sampling theorem simply defines an important condition whose idea is applicable to 
discrete-time systems since these systems are giving the minimum sampling frequency that 
is necessary to reconstruct the original signal from a specific sampled signal. 
During the designing stage of any discrete-time control system, designers have to worry 
about filters and transducers for sampled data external signals. We can normally observe 
that, for the most part of designers, response time constants that have been involved with 
automatic control are estimated taking any known minimum time constant belongs to the 
process and associated with the maximum natural frequency. 
This procedure, in the most part of designs, can bring some problems as excessive 
computation time applied for CPU [central processing unit] and others as a poor 
representation of system behavior during the simulation stage. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 

Figure 6 – Frequency Spectrum for Study 

 

| X(jω)| 

ω 

-ω1 ω1 



  
LRG-ME 006/2012 

  

Shannon’s Theorem.doc 28 

For proving sampling theorem, first, we are going to assume that a continuous signal x(t), a 
time function, has its frequency spectrum response as shown in figure 6.  
We have to consider that in this signal there are no components with frequency above or 
bellow frequency ω1. So, there are no harmonic components in sampled signal here 
considered, only the fundamental frequency. 
For continuing the development, focusing on sampling theorem, we have to do a lot of 
auxiliary insights based on previous calculus that have been taking as a large support. 

Sampling theorem states that sampling frequency 
T
π2

ωS = , where T is sampling period, 

has to be greater than 2ω1 , taking into account figure 6, or in other words: 
 

ω2ω 1S >                                                          (096) 
 
In equation (096), exactly value of ω2 1  corresponds to the frequency spectrum of the 
continuous signal x(t), shown in figure 6, what demonstrates that the whole signal can be 
reconstructed completely from the sampled signal that we are going to call x*(t), only to give 
a different symbol or a different name, avoiding any confusion. 
Now, in terms of mathematical modeling, we have to present a new concept about sampled 
signals and how we can work with them. A question of working with pulsing signals in s-
plane, or complex plane, is shown by several authors and, only for us, it will need all 
concepts and theory that was developed before in this technical article. 
Laplace transformation of any time function x(t) is x(s) and demands that function be 
conform with the final value theorem. This theorem states that:  
 
 

0=
∞→

)]([ sxslim
S

                                                         (097) 

 
 
In (097) s is the Laplace complex operator. 
 
Initially, we are going to compute the value for Laplace transformation of a particular 
function that depends on the impulsive function )( kTt −δ . 
Equation (098) represents what mathematical observers have been used to solve a 
question about application of Laplace transformation techniques to sampled functions.   
Normally, in ordinary continuous mathematics, we can write a Laplace transformation of a 
unit impulsive function as follows: 
 
 

                                               ekTt kTS£ −=− )]([δ                                                    (098) 
 

 
From previous equation (098) with can write: 
 

L++++=

∞

=

− −−−∑ eee1

0k

kTt TSTSTS£ 32)]([ δ                          (099) 
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It is very interesting and important to know the foregoing development in sequence what 
admits considering a computation of each sampling of sampled signal, mathematically, 
expressed by a orderly summation that depends on the sampling timing pulse, here 
represented by a singular impulsive function. 
From previous equation (046), we can rewrite (099) as follows: 
 

e1
1

eee1

0k

kTt
TS

3TS2TSTS£
−

−−−
−

=++++=

∞

=

−∑ L)]([ δ                   (100) 

 
 
We can notice that a series, whose sequence is defined by only a polynomial ratio, has a 
particular characteristic of being a finite series, in other words this series has convergence. 
We are going to created a new impulsive function that will represent a modulated function 
that will be called x*(t), so that a continuous function x(t) was modulated by impulsive 
function )([ kTt −δ . 
So, we can write: 

 

∑
∞

=

−=

0k

kTttXx*(t) )](..)( δ                                            (101) 

 
 
Control literature authors suggest taking the following relationship to represent Laplace 
transformation for any sampled function x(t) and it will be write as follows: 
 

∑
∞

=

−==

0k

kTttxx*(t)X*(s) ££ )](.)([][ δ                                   (102) 

 
 
In equation (102) there exists a product of two functions and for obtaining the Laplace 
transformation of a product of two functions, as that, it is necessary developing a new 
procedure considering properties of Laplace transformation theory. 
Now, we can perform the Laplace transform of the product of two functions f(t) and g(t) as 
follows: 
 

dtetgtftgf(t) st£ ∫
∞

−=
0

)]()([)]([                                        (103) 

 
Laplace anti-transform, of only function f(t) , is the new function F(s) and given by (104) for   
t>0: 
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dsesF
jπ2

1f(t)
jc

jc

st∫
∞

∞
=

+

−
)(][                                             (104) 

 
In equation (104) c has to be understood as an abscissa convergence parameter that has 
been used by taking a natural convergence of functions during the Fourier transformation 
process. See reference 14 for more information. 
 
Considering both functions: 
 
 

dtetgdsesF
jπ2

1tgf(t) st
jc

jc

st£ ∫ ∫
∞

−
+

−

∞

∞
=

0
)]([])([)]([                              (105) 

 
 
For maintaining the identity of each differential variable into the integration process and no 
making confusion, we are going to modify the complex variable s in both of parcels of (105). 
So, we have a new composition of integral as follows: 
 
 

dtetgdPePF
jπ2

1tgf(t) st
jc

jc

Pt£ ∫ ∫
∞

−
+

−

∞

∞
=

0
)]([])([)]([  

 
 
Putting each integral in adequate form, we obtain: 
 
 

])]([[])([)]([ )( dtetgdPPF
jπ2

1tgf(t) tSP
jc

jc
£ ∫∫

∞
−

+

−

∞

∞
=

0
                       (106) 

 
 
The foregoing manipulation characterized by a displacement of complex variable p to inside 
the differential in dt is possible since, after operations, the second integral in differential dp 
operates over it. Other consideration made by reference 1 is that because of uniform 
convergence of both integrals, we can invert the order of integration. Somehow, both of 
observations are available. 
 
We can notice that the second integral of (106) is  
 

)()]([)]([ )()( PSGdtetgdtetg tPStSP −== ∫∫
∞

−−
∞

−

00
                       (107) 

 
 
 
So, equation (106), from (107), gets: 
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)(])([)]([ PSGdPPF
jπ2

1tgf(t)
jc

jc
£ −

∞

∞
= ∫

+

−
                                   (108) 

 
Or better: 
 
 

dPPSGpF
jπ2

1tgf(t)
jc

jc
£ )()()]([ −

∞

∞
= ∫

+

−
                                   (109) 

 
 
Equation (109) states that, the Laplace transform of the product of two functions f(t) and g(t) 
as equation (102) is given by (109), or condensing: 
 
 

dP

0k

PSPX
jπ2

1

0k

kTttx

0k

kTttxx*(t)X*(s)

jc

jc
£

££

∫ ∑∑

∑
∞

∞

∞

=

−=
∞

=

−=

=

∞

=

−==

+

−
])()([)](.)([

)](.)([][

δδ

δ

                    (110) 

 
 

Considering equation (100) we have for (110): 
 
 

dP
e1

1PX
jπ2

1

0k

kTttxX*(s)
jc

jc
PST

£ ])([)]()([
)(∫∑

∞

∞ −
=

∞

=

−=
+

−
−−

δ  

 
or better: 
 

dP
e1

PX
jπ2

1X*(s)
jc

jc
PST∫

∞

∞ −
=

+

−
−− )(

)(                                        (111) 

 
 
Remarks about equation (111) are important at that point of study. We always may assume 
or demand that poles of function X(s) be found lying in the left-half complex s-plane and that  
the proper function can be expressed as a ratio of two analytic polynomials whose a 
denominator be a polynomial of second order, at least, being true the following relationship, 
here copied from equation (097): 
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0=
∞→

)]([ PP
P

xlim  

 
 
Equation (111) is a generic expression that has been developed from specific conditions 
where we have been introduced an important concept of a Laplace transformation applied 
to a generic sampled function modulated by a generic impulsive function delta. 
Now we are going to evaluate equation (111) to obtain the recursive formula that will be 
applied to Shannon’s theorem. 
 

Considering (111), poles of the parcel 
e1

1
PST )( −−−

 are zeros of numerator expression 

e1 PST )( −−−  and solving this equation: 
 

0=− −−e1 PST )(                                                   (112) 
 

 
we have solution values of complex variable P as a function of another complex variable s 
as follows: 
 

πkj2PST −=−− )(  Radians 
 

and  
 
 

k
T
π2jSP +=                                                  (113) 

 
or in generic form: 
 

k
T
π2jSP ±=   for  L0,1,2,3,k =                                         (114) 

 
 
Through equation (114) we may conclude that there exist an infinite number of poles that 
solve the problem. 
So, in order to evaluate the integral of (111), we have to choose and define a contour taking 
into account previous theory applying a contour technique that was already developed on 
this technical article. 

In figure 7, we represent the complex p-plane with set of poles of X(s) and 
e1

1
PST )( −−−

. 

The specified contour encloses all poles of function 
e1

1
PST )( −−−

, but it does not enclose 

poles of function X(s). 
The contour, which is sketched here, has as a particularity the line parallel to imaginary axis 
from inferiority level ∞− jc  to superiority level ∞+ jc . They are points that have been 
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mapped at the infinite and, to complete the closed contour, we are going to create a 
semicircle Γ that has an infinite radius to meet the infinite line. So, we have figure 7 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 

 
 
 
 
 
 
 

Figure 7 – Complex P -Plane 
 
 
 
From figure 7, considering complex p-plane, we are going to promote the calculation of 
integral in equation 111, taking into account contours sketched: 
 

∫∫
∫

−−−−

+

−
−−

−
−

−
=

=
∞

∞ −
=

Γ

dP
e1

PX
jπ2

1dP
e1

PX
jπ2

1

dP
e1

PX
jπ2

1X*(s)

PSTPST

jc

jc PST

)()(

)(

)()(

)(

                            (115) 

 
 
Taking into account the theory, we can notice that the second integral, integral acting over 
semicircleΓ , does not encircle any poles and since the integrand obey the 
condition 0=

∞→
)]([ PP

P
xlim , where the degree of the denominator of X(P) be, at least, 2 

greater than the degree of numerator, the value of this integral is zero, or: 

Imaginary 

Real 
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1
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0=
−∫ −−

Γ

dP
e1

PX
jπ2

1
PST )(

)(                                               (116) 

 
So, we have as solution of integral: 
 
 

dp
e1

PX
jπ2

1X*(s)
PST∫ −−−

=
)(

)(                                           (117) 

 
 
And then, the integral along the closed contour that is encircling poles of function 

e1
1

PST )( −−−
 is different from zero and can obtained considering, now, theorem of 

residues. So, the solution of integral will be done by the following mathematical expression, 
basing on previous equation (041): 
 
 

])(Re[)(
)()( e1

PXofsiduesjπ2dp
e1

PX
PSTPST −−−− −

−=
− ∑∫                    (118) 

 
 
From now, it is important to take care of understanding that complex variable P is the 
present variable and that the solution for the problem, initially, attained specific values 

computed through equation (114) when k
T
π2jSP ±=  for  L0,1,2,3,k = . 

Initial conditions for the problem have as the solution the consideration of poles of function 

e1
1

PST )( −−−
 lie in the left-side complex P-plane, or, by considering a generically case, the 

complex s-plane. 
Although, we can notice, in this way, that during the process of encircling poles, by the 
contour line in process of integration, singular points as poles and zeros, for instance, are 
treated as singularities and cannot seen as analytic points for what calculus are available. 
That is what, during encircling process, these points are at least involved by a contour line, 
or better, the mapping does not pass through singularities. 
And then, we can obtain, for computing residues, the following relationship: 
 
 

e1
PXPP

Pe1
PXofsidues

PST
k

kPPST )()(
)()(

lim
)(Re

−−→−− −

−
=

−
                            (119) 

 
 
Particular values for parameter P k , considering L0,1,2,3,k = , may be obtained by 
consulting (114). 
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So, we have for equation (119): 
 

 

 

!)()(

)()()()(
lim )()(

ind
0
0

11
PXPP

e1
PXPP

e1
PXPP

P

kk

PST
kk

k
T
π2jSP

PST
k

kP

==
−

−
=

=
−

−
=

−

−
−−

+=
−−→

                             (120) 

 
 
For solving foregoing equation, we have to proceed, first, by elimination of the specific   
indetermination condition by using L’Hospital rule that determines the application of 
derivative into limit operation. 
Then, we can rewrite (120) as follows: 
 

)(
)]([

)(
)]([

)()()(
lim

[

])()[(
lim

)(Re

)(
)](

)]()(

PX
T
1

e
jπ2
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d
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−
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             (121) 

 
 

 
With the solution in equation (121), we can obtain the solution for previous equation (117) 
and solving the integral formula, as follows: 
 
 

])([])(Re[

])(Re[
)(

)(

)(

)(

∑∑

∑
∫

∞

∞−

−−=
−

−
=

=−
−
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−−

PX
T
1

e1
pXofsidues

jπ2
jπ2

jπ2
e1

pXofsiduesjπ2
dp

e1
pX

jπ2
1X*(s)

PST

PST

PST
          (122) 

 
 
Finally, we can write the generic mathematical expression for Laplace transformation of 
sampled function X*(s)  as a function of poles of impulsive modulation function. 
Then we have: 
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])([∑
∞

−∞=

+=

K

k
T
π2jSX

T
1X*(s)                                      (123) 

 
 

It is interesting noticing that, if we want to work in the z-plane, only a changing of variable is 
necessary. Make it possible, we have: 
 
 

])ln([∑
∞

−∞=

+=

K

k
T
π2jz

T
1X

T
1X(z)                                      (124) 

 

In (124) we can notice that z
T
1s ln=  or that ZeST = . 

Other remark, in the way of composition of original sampled function, during the 
reconstructed process, parameter k varies from −∞  to ∞+  what corresponds to the 
modulation process. 
 
 
10.1. SAMPLING THEOREM OPTIONAL CALCULUS 
 
During the last generic demonstration, much information were obtained from a specific 

disposition of poles considering the polynomial ratio 
e1

PX
PST )(

)(
−−−
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Figure 8 – Complex P - Plane 2 
 
Now, demanding that the new contour be operating over the opposite region than the other 
considered in figure 7, we can obtain a new configuration as shown in figure 8, new figure 
for the p-plane 2. 
Taking the same proposition that has been adopted for certain explanation, when the 
closed contour were oriented to right-half complex p-plane, we can rewrite equation (115), 
but now considering the closed contour oriented to left-half complex p-plane, as shown in 
figure 8. 
So, we have: 
 
 

∫∫
∫

−−−−

+

−
−−

−
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−
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=
∞

∞ −
=

Γ

dP
e1

PX
jπ2

1dP
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dP
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PX
jπ2
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PSTPST
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)()(
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)()(
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                            (125) 

 
 
Generic equation for this case is exactly the same as (115), but for both analyses the 
considerations are different from each other. 
Now, we can notice that, the second integral, integral acting over semicircleΓ , does not 
encircle any poles and, when the condition ∞→P  is effectuated, denominator e1 PST )( −−−  
goes to unity as previous case, but function X(P) can admit and present values different 
from zero, so, 0≠

∞→
)]([ PP

P
xlim . And then, integral acting over semicircleΓ  is not always 

zero. This fact occurs because of the region at that the semicircle Γ  is operating. Paying 
attention to this, we can firmly observe that, exactly inside this region, poles of function X(P) 
are found, what can bring a new consideration. If we admit, for consideration, a 
approximation that substitutes X(P) by )]([ Pe P xεlim

ε 0→
 with )( 0>ε . 

Previous method of approximation can bring … 
So, we obtain: 
 
 

0=
−∫ −−
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dP
e1

PX
jπ2

1
PST )(

)(  

 
and: 
 

dP
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=
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By using previous concept and rewriting equation (118), we have: 
 

])()(Re[)(
)()(

PXofpolesat
e1

PXofsiduesdp
e1

PX
jπ2

1
PSTPST −−−− −

=
− ∑∫      (127) 

 
 
In (127) we consider the movement along the closed contour developed in 
counterclockwise, so that, the signal, in the integral operation, can be taking positive. 
 
To obtain poles of function X(P) at the adequate form, we have to use Heaviside theorem or 
partial fraction expansion theorem that can be condensed as follows: 
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If we want to work in the z-plane, only a changing of variable is necessary. 
By substituting eZ ST= into last equation, we have: 
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In equation (129) we still can the last changing by substituting variable P by S, so: 
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10.2. SAMPLING THEOREM CONCLUSIONS 
 
After to present lots of concepts and taking the basic theory to understand the application of 
Shannon’s theorem, or sampling theorem, we are going to continue the explanation and 
make conclusions about it. 
For facility, we rewrite an excerpt of previous text used to give sequence in this technical 
article. 

Sampling theorem states that sampling frequency 
T
π2

ωS = , where T is sampling period, 

has to be greater than 2ω1 , taking into account figure 6. In other words, what is printed 
here is that all design applied for discrete-time control has to obey an important relationship 
between sampled frequency and maximum frequency associated to control process and 
this relationship can be describe as ω2ω 1S > . 
We are going to choice the study that was made taking, first, a specific closed contour 
encircling poles of modulation function. In this case, we have to consider that input function 
X(S) have its poles lain on the right-half complex s-plane.  As input function is modulated by 

a signal at the frequency 
T
π2

ωS = , and its harmonics, it is easy to notice that, in previous 

equation (123), sampled frequency may be expressed by the expression k
T
π2 . So, we can 

write, for sampled signal, the following equation: 
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∞

−∞=
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K

kωωjX
T
1

K

kωjSX
T
1X*(s) ss                        (131) 

 
 
If we take the frequency spectrum for X*(s), we have:  
 
 

])([∑
∞

−∞=

+=

K

kωωjX
T
1X*(s) s                                       (132) 

 
 
As there is a modulation procedure, we are going to develop last equation in expansion of 
steps considering each module. 
So, we have: 
 

LL ++++−+= )]([)()]([ ωωjX
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T
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Now, representation of expanded summation, seen previously, must consider two 
conditions for the value taking to sampled frequency in relation to maximum frequency that 
can be observed from the motion of control process. We have to remember that maximum 
frequency of process is always associated to minimum time constant of this process. So, 
the reconstruction of the sampled signal involved here has to consider this appointment. 
 
 

 
 
 
 
 
 
 
 

   
 
 
 

Figure 9 – Spectrum  
 

(a) Spectrum for ωs > 2ω1 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

(b) Spectrum for ωs < 2ω1 
 
 

Figure 9 – Spectrum of |X*(jω)| as a Function of ω  
 
 

When we observe figure 6, that represents the frequency response of continuous signal 
input x*(t), it is clearly that limits  2

ω−  and  2
ω+  are, in fact, the field of existence taking 

the frequency spectrum as a reference. If it is necessary to reconstruct the whole 
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continuous signal, we have to worry about the range that must be respected for that signal 
being represented. This frequency range is given by limits  2

ω−  and  2
ω+ , mentioned 

previously because, within this range, the signal performance will be respected without 
being bypassed or overlapped. 
Now, it is clearly too when there is a processing in course that has to promote all the 
reconstructed step by step, considering the modulation process, each piecewise of time will 
determine whether there has been a completely reconstruction or not.  
Figure 9 shows that each plot of )ωjX (*  versus ω consists of )ωjX( repeated every 

sampled frequency 
T
π2

ωS =  Radian per second. 

Paying attention to preceding figure 9, that shows the spectrum for two conditions, we can 
see important conclusions about the particular value for parameter T. We may have in mind 
that parameter T is directly linked to sampling process or more precisely linked to time 
constants involved with the process. 

For the condition where ω2ω 1S >  or 
1ω

πT < , taking into account figure 9 (a), we can 

notice that there is no overlap effect over complementary components of primary 
component. Thus, the original shape of primary component is preserved by the sampling 
process.  

Now, for the opposite condition where ω2ω 1S <  or 
1ω

πT > , taking into account figure 9 

(b), we can notice that there is overlap effect acting over each components. Thus here the 
original shape of primary component is not preserved by the sampling process anymore. 

The reconstruction of the original signal, if the condition 
1ω

πT <  is respected, it is possible 

by using low-pass filter exactly after the signal having been sampled. 
So, Shannon‘s theorem can be proved by lots of insights shown the important relationship 
between sampling frequency and the one that characterize the motion of the process 
associated to input continuous signal. 
 
 
10.3. SAMPLING THEOREM OBSERVATIONS 
 
It is very important to understand the effect introduced into sampling process by sources of 
error that we can specified based on the distortion what does not allow a perfect 
reconstruction when the synthesizing process is activated. There are two sources of error 
and we can take the following explanation about it. 
Taking following equation from equation (123), that was developed previously, we can 
obtain: 
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Equation (134) has already been understood as a proper relationship in which appears the 

influence of sampling frequency  
T
π2

ωS = , used here into this procedure. 

It is clearly that, first; the sampling process introduces lots of distortion into the frequency 
spectrum of continuous signal that has been sampled. This kind of error is only associated 
to sampling process prior to the reconstruction and synthesizing step. 
Another error can be understood as a reconstruction error that can be introduced by phase 
shift from lag effects that are associated to lag time constants involved with the process, 
mainly during closing loop action applied to feedback automatic control.  
For us, the focus is on the first problem associated to the distortions caused by the 
sampling process.  
Taking into account equation (134), we are going to develop two situations as follows. 
Imagine the input function X(S) is a sine wave at 1 Hz  and sampling frequency is 
performed at 10 Hz. As sampling frequency is greater than process frequency we do not 
have more problems with the sampled signal. Frequency components verified into spectrum 
sequence are 1 Hz, 11Hz, 21 Hz,  31 Hz, 41 Hz, 51 Hz, … To obtain this we can take 
equation (134) with 1ω = and [1]kωS =  considering K= 0, 1, 2, 3, … 
Now, imagine the input function X(S) is a sine wave at 11 Hz  and sampling frequency is 
performed at  the same 10 Hz. As sampling frequency is fewer than process frequency we 
have problems of distortions on the spectrum frequency graphics. At that now situation 
frequency components verified into spectrum sequence are 21 Hz,  31 Hz, 41 Hz, 51 Hz, … 
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